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Steady, inviscid, incompressible two-dimensional flow in a quarter-circular cavity 
containing two vortex patches is investigated. A two-parameter family of solutions, 
characterized by any two out of the positions of the separation and reattachment 
points of the main eddy, the tangential velocity at separation and the ratio of the core 
vorticities, is identified and computed numerically. It is found that solutions can only 
be obtained for a rather narrow band of combinations of these parameters; the rea- 
sons for this constraint are discussed. Finally, we consider whether any of the coupled 
Batchelor flow solutions actually does represent the limit of high Reynolds number 
flow by comparing the inviscid results with those of earlier Navier-Stokes computa- 
tions (Vynnycky & Kimura 1994). Agreement for the position of the dividing stream- 
line and the location of the centre of the main core proves to be very encouraging, and 
suggestions are made as to the possible future development of such a two-eddy model. 

1. Introduction 
Inviscid flows which have uniform vorticity and are bounded by vortex sheets have 

received attention because they may plausibly explain the structure of viscous flow in 
the idealized limit of infinite Reynolds number (Re). Since this proposal was first made 
(Batchelor 1956a, b), much effort has been expended in obtaining a mathematically 
complete picture of high Reynolds number flow past a bluff body. In the situation 
where the bluff body is a circular cylinder, the wake behind the cylinder is now believed 
to consist of two symmetric counter-rotating eddies of constant vorticity of height 
and length O(Re'/2), each separated from the irrotational mainstream flow by vortex 
sheets (for example, Smith 1985; Fornberg 1985). The inviscid computational aspects 
of this problem, namely finding the a priori unknown position of the vortex sheet, 
have been considered by Sadovskii (1971), Pierrehumbert (1980), Smith (1986) and 
Moore, Saffman & Tanveer (1988). Other exterior inviscid flow problems of a similar 
nature have also received attention, principally rotational corner flow (Chernyshenko 
1984; Moore et al. 1988), flow past a wedge (Saffman & Tanveer 1984) and Batchelor 
flows in channels (Chernyshenko 1993; Turfus 1993; Giannakidis 1993). In each case, 
solution curves are characterized by the value of the constant core vorticity, although 
the boundary-layer computations which seem likely to be able to determine which 
value viscous theory will select have yet to be carried out. 

For interior flows, on the other hand, there have been some successes in unifying 
quantitatively the results of high Reynolds number computations with those of the 
inviscid and boundary-layer theories arising from asymptotic analysis for Re+ 1. In 
these cases, with the inviscid constant-vorticity region coincident with the enclosing 
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boundary, the measure of agreement between the two approaches is the numerical 
value of the core vorticity. In particular, the linearized analysis of Lyne (1970) for 
driven flow in a semi-circle produces good agreement with the numerical results 
of Kuwahara & Imai (1969), whilst the computations of Haddon & Riley (1985) for 
flow in a family of ellipses with varying eccentricities appear to agree, after extrapo- 
lation, with the boundary-layer methods of Riley (1981) and Vynnycky (1994). 

However, interior flows containing a separated boundary layer, like the classical 
driven cavity problem wherein flow in a square box is driven by the uniform motion 
of one of its sides, have proved to be analytically intractable. Since it was first 
formulated (Burggraf 1966), the driven cavity has often been used a model problem 
for testing the effectiveness of Navier-Stokes solvers at high Reynolds number (for 
example, Schreiber & Keller 1983; Vanka 1986; Bruneau & Jouron 1990); it is now 
well-known, for instance, that flow separation occurs within the cavity, so that in ad- 
dition to the main eddy, recirculating eddies develop in three corners of the box when 
Re - O(104). The treatment of the inviscid aspects of a situation of this type, with 
analogy to exterior flows, thus forms the purpose of this paper. For example, were 
one to attempt to construct a model based on coupled Batchelor flows, one would 
naturally be led, based on the high Reynolds number computations just mentioned, to 
include three free boundaries. Rather than attempt the classical driven-cavity problem 
for the purposes of considering the issue of internally confined coupled Batchelor 
flows, we opt instead for a scenario containing just one such free boundary. Recently, 
Vynnycky & Kimura (1994) have considered high Reynolds number flow in a quarter- 
circle, driven by a constant shear at one of its flat boundaries, the other being subject 
to no shear; flow separation occurs at the curved no-slip boundary, resulting in a more 
vigorous flow on one side of the dividing streamline, with a counter-rotating eddy on 
the other. The boundary conditions in their problem ensure that there is only one such 
dividing streamline. For the inviscid flow considered in this paper, the full boundary 
conditions used in that paper are unimportant, except in so far as there is no normal 
flow out of the quarter-circle and the imposed boundary conditions for shear stress and 
tangential velocity are consistent with the establishment of two recirculating flows. The 
earlier paper considers both clockwise and anticlockwise flow, although in the latter 
case, the streamfunction contours indicate that the position of the dividing streamline 
is affected at reattachment by the viscous shear layer at the horizontal layer. Conse- 
quently, as we are seeking an inviscid model, we deal with their clockwise flow case. 

In $2, we formulate an inviscid two-eddy problem and identify the features of the 
Batchelor flows we might expect. In particular, there are found to be two degrees 
of freedom, corresponding to any two of: the separation and reattachment points of 
the main eddy; the ratio of the core vorticities; and the slip velocity at separation 
and reattachment of the main eddy. In $3, the solution method, adapted from 
one of two used by Moore et al. (1988) and involving the iterative solution of two 
coupled Fredholm equations, is explained. In $4, we present the main body of the 
results, while in 0 5,  we compare them quantitatively, where possible, with those of 
Vynnycky & Kimura (1994), whose computations we re-do using a finer, uniform 
mesh. Our findings are assessed in $6, in particular as regards whether the two-eddy 
model does actually represent the high-Re limit, and future extensions are proposed. 

2. Formulation 
In the region x > 0,y > 0,x2 + y 2  < 1 (see figure l), we assume there to be two 

Batchelor flows, given by streamfunctions w+ - and constant vorticities o+, below and 
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x =  1 
FIGURE 1. Sketch of the geometry for coupled Batchelor flows. 

above, respectively, the curve y = f ( x ) .  Flow separation is assumed to occur at A 
(cosB,sinB) on x2 + y2  = 1, with reattachment at B (0, h),  where h = f(0). The 
governing equations for w+ are then 

v 2 w+ = -%, (2.14 b )  
subject to 

y+=O on 

y = o ,  O < X d l ,  

y = f ( x ) ,  0 < x < cos B, 
x2 +y2 = 1, 

x=O, O < y < h ,  

COSB < x < 1. 
(2.2a) 

and 
x = O ,  h < y < l ,  
y = f(x), 0 < x d cos B, (2.2b) 

For the configuration to be steady, the pressure p must be continuous across y = f ( x ) .  
By Bernoulli's theorem, 

x2+y2 = 1, 0 < x < COSB. 

y-=O on 

(2.3a, b )  
1 2 

P. + (VIP.) = c+ - On y =f(x)*, 

(vw+)2 - (vv-)2 = q2, 

so that continuity of pressure requires 

(2.4) 
where 

and Ci are the Bernoulli constants. 
q 2  = 2( c+ - c-) 

The substitutions yk = q@+ - then give 

V2@, = -1, (2.6a, b )  
with @+ - satisfying (2.2a,b) respectively, and with (2.4) now 

( V I J J + ) ~  - O2 (V@-)2 = Q2, (2.7) 
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(2.8u, b) a = -  w- e=-, 4 
a+ w+ 

Note here that it is advisable to define SZ as w-/w+, rather than w+/cL)-, since this 
permits us to deal with the hypothetical case w- = 0, corresponding to stagnant flow 
in the upper region; on the other hand, since the mechanism for flow is assumed to 
exist at y = 0, we do not need to consider the eventuality w+ = 0. 

Writing 

then, if Q # 0, Q+ cannot both vanish at A and at B and the only possibility 
is that Q+ = Q, Q- = 0, corresponding to tangential separation and reattachment. 
Furthermore, if Q = 0, an evident solution in series form is for the case h = 0, Q = +1, 
given by 

(rz(2n-1)/‘ - r2)  sin(2n - i ) n e / d  2 m  

(2.9~) 1’ @ + =  (&!) c n=l (2n - 1) ((2d/n)’ - (2n - 112 

2 O0 (r[n/(n/2-&)1(2n-1) - r2) sin(2n - l)[n(e - &)]/(in - 
3 (2.9b) 

with d = in ,  so that f ( x )  = x, and the separation angle is in. Using (2.9a,b), it is 
clear that if Q = 0, the separation angle must necessarily be i n ;  otherwise, if we 
suppose it to be P (say) where, without loss of generality, 0 < /? < tn ,  then in terms 
of local polar coordinates ( r* ,  O*) taken about the separation point, we would have 

) 
&=(l -&!)  c 

n=l (2n - 1) ((1 - 22/n)’ - (2n - 1)2  

so that in evaluating (Q+)p+ for r* < 1, 

so that locally Q: # Q2Q?. Further if Q = 0, then Q2 = 1 by a similar reasoning. 
Whilst we are unable to provide a rigorous uniqueness theorem for the solution of 

the above equations when Q # 0, counting arguments for the discretized equations 
along the lines of Moore et ul. (1988) indicates that if d and h are given, then 
Q,SZ and f ( x )  can be determined. If we describe f ( x )  by the coordinates (xm,ym), 
where rn = 0,1, .., N ,  then since the separation and reattachment points are known, 
the unknowns are yl,y2, ..y~-1, Q and Q, a total of N + 1. Now, the boundary-value 
problems for the streamfunctions @+ determine uniquely the velocities Q* at (xm,  ym), 
so that applying (2.7) at (xm,  ym) ( m =  0,1, .., N )  gives N + 1 equations 

R, Q:(m) - Q2QZ(m) - Q2 = 0 (rn = 0,1, .., N ) ,  (2.10) 

where 

Note that once a solution has been found, then changing the sign of Q, Q or both 
also produces a solution. 

To consider flow near separation or reattachment, we introduce local coordinates 
(s, n) along and perpendicular to the boundary of the quarter-circle, and consider 

Q+(rn) = Q + ( x m ,  Ym) (rn = 0,1, -9 N ) .  
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without loss of generality the separation point A .  The equation for $- is then 
approximately 

(2.11) 

whence the particular integral is approximately 

$(! = - t<n - nA)2 + +(n - nA)g(s - sA) ,  (2.12) 

where 
y1 - nA = g(s - s A )  

is the equation for y = f(x) in the vicinity of the separation point and g(O), g’(0) both 
vanish. Thus, as s + SA, 

so that 
Q+ = Q + O ( S  - SA)’. (2.13) 

Next, although the flow in the lower region is rotational, qf will be dominated near 
the separation point by an irrotational term of the form Qn, in which case the analysis 
of Smith (1982) leading to the results of Kirchhoff’s free-streamline theory holds, so 
that 

g(s  - sA) = aA(s - s ~ ) ~ ’ ~  + . . . , (2.14) 
where aA is the cusp constant. This provides the necessary details near the separation 
point for parameterizing the solution curve in 3 3. 

3. Solution 
We rearrange the foregoing into a form amenable to numerical solution; the method 

is based on one used by Moore et al. (1988), although with enough differences to 
warrant a detailed account. Introducing plane polar ( r ,  d )  coordinates, related to 
Cartesian coordinates as usual by 

x = rcos8, y = rsin8, 

and writing 

the equation 
(3.la, b )  

1 
4 

yc(r, 8) = (1,’~) ( -r2 log r sin 28 - -r2 (48 cos 28 + n - z cos 28) 

1 + 

- 1 4 (r2 + :) cos 28 tan-’ [l-r4cos48] +?tan-’[ 1-r4 1) (3.2) 

( r2  - l /r2) sin 28 log [(I + r412 - 4r4cos228] 
r4 sin 48 1 2r2 sin 28 

can be derived as the solution to (2.6), subject to homogeneous boundary conditions 
on the boundary of the quarter-circle. Equation (2.6a,b) gives 

V2@+ - = 0, (3.3a, b )  
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0 o n 8 = 0 ,  O d r G l ;  O=in ,  O d r G h ;  r = 1 ,  Od8d&; 
@ + = {  --Yc on r = f(O), 

( 3 . 4 ~ )  
and for I$-, 

Denoting by Qc the tangential velocity due to yc, and by Q+ - that due to @+, at the 
dividing interface, (2.7) is now 

(3.5) 

Defining the complex variables z and Z by z = x + iy and Z = X + iY respectively, 

((2, + Q C ) ’  - a2 (0- + Q c ) 2  = Q 2 .  

consider the conformal map 

(22 + 1)2 + y”(2 - 1)2 

y*(z2 - 1)2 
z - z =  , 

where 

y” = I 2 (cot2& (s)2), y* = ; (s)2) 
This can be shown to map the quarter-circle into the upper half of the Z-plane, 
with 0 d Re(z) < 1 being mapped to (1 + y”)/y’ G Re(Z) < GO, 0 d Im(z) < 1 to 
(1 + y”)/y* 2 Re(Z) 2 y”/y”, and I z I= 1,0 < arg(z) d n/2 to -a < Re(Z) < y”/y*; 
furthermore, the points A and B are mapped to Z = T1 (A’ and B’) respectively. 
The flow above y = f(x) maps therefore by analogy to a Sadovskii-type vortex (S- ) ,  
enclosed by the mapping of the flow below y = f(x) (see figure 2), denoted by S+. 
Following Moore et al. (1988), we may parameterize S by 

X ( 0 )  = - cos 0, ( 3 . 7 ~ )  

Y (0)  = sin3 o C a, cos j 0 ,  o < o < n, (3.7b) 

into which we have already built the requirement that separation and reattachment 
at A and B respectively should be tangential; however, see 0 6 for a further discussion 
of the parameterization. 

Denoting by W+ - = U+ - - iV+ - the complex velocities in the S+ regions of the 
Z -plane, where 

00 

j=O 

a@+ v, = --, a@+ 
ax u, = - ay 

( 3 . 8 ~ ~  b )  

we proceed by first extending U,  - iV, analytically across Y = 0 by means of 

U+(X,  - Y )  = U*(X,-Y), v,w, Y )  = -V*W,-Y). 

Applying Cauchy’s integral theorem to W+(Z’)/(Z‘ - Z) and using the indented 
contours shown in figure 2 in order to relate the velocity at a point on S to an 
integral around the boundary of the vortex and its image in the X-axis (s), we 
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S 
/ * q r ; - = o  \ 

- 
FIGURE 2. Governing equations and indented contours for the application of Cauchy’s theorem. 

obtain 
W+(Z’) dZ’ W+(Z‘) dZ‘ 

-niW+ + 
W+(Z’) dZ’ 

niW- + = 0, 

(3 .9~)  

(3.9b) 

where all integrals are taken in the clockwise sense. Consider first the integral on 
the right-hand side of (3.9~). The point Z = cc corresponds to z = 1, which is a 
stagnation point in the physical plane of the flows $TI+, wc and hence 3,. Furthermore, 
differentiating (3.6) with respect to z gives 

8z(z2 + 1) i ( z )  = - 
y ( z 2  - 1)3’ 

(3.10) 

so that, since Z(l)-l = 0, Z = 00 is a stagnation point of the transformed flow, and 
hence the integral vanishes; equations (3.9a,b) may then be amalgamated to give 

(3.11a,b) 

Incidentally, the points of the quarter-circle where Z vanishes, that is z = 0, i, present 
no problem, since they are stagnation points at which the complex velocities behave 
as z and z - i respectively, so that the complex velocities in the transformed plane at 
(1 + y”)/y’ and y”/y* are finite. For later use, we note here that the positions of the 
core centres, in the physical plane, for the two eddies are given by the solutions to 

(3.12a, b) 

Retaining the earlier notation for the streamfunction as $+ and introducing the - 

velocity potential for the exterior and interior regions as $+, - given by 

we have that on the boundary S, where $+ - = - y c ( 0 ) ,  

dZ 4, dd+ d i i  .dye  W , d O = d O + i ~ = -  - 1-. 
dO dO dO 

(3.13a, b) 

(3.14a, b) 
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Multiplying (3.11a,b) by dZ/dO and taking the imaginary part subsequently produces 

dO' 

dO' 

dO', (3.15a,b) 

two Fredholm equations of the second kind for d4+/dO. As in Moore et al. (1988), 
the principal value integral may be removed by rewriting the right-hand sides of 
(3.15a,b) as 

so that the integrands are bounded for Z # +1; here 2 denotes the complex conjugate 
of z. 

However, the cusps at Z = +1 require special treatment which differs from that 
in Moore et al. (1988). In both cases, the velocities at the cusps are finite, and since 
dZ/dO - 0 (or 71 - O) ,  we have d$+/dO - 0 (or 7r - 0). At Z = +l, the integrals 
on the left-hand side of (3.15a,b) arefinite, so that the entire left-hand side vanishes. 
The right-hand side vanishes too, since 

dvc dvcdX dWcdY +-- dO B X d 0  d Y d O  
- - - -- 

- sin2 o 
implies that all the integrands are finite and that the non-integral term vanishes; 
thence (3.15a,b) is satisfied identically. Instead, we evaluate (3.1 la) at the endpoints 
to obtain, for S,, 

For S-,  we appeal to the fact that the cusps are stagnation points of the inviscid flow 
in the z-plane; however, the substitution given by (3.la,b) has introduced tangential 
velocities 

1 
~ ~ ( 8 )  = -- ((in - 28) cos 28 - i n  + sin 28 log(2 sin 28)) , (3.18~) 

7r 

(3.18b) 

at A and B respectively which must be cancelled out by the tangential velocity 
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contribution of @-. Taking these and transformation (3.6) into account, we arrive at 

U B ( h ) Y * (  1 + h2)3 (Q-)z=l = uB(h)  I Z(ih) I-1= 
8h( 1 - h2) ' 

To solve (3.15a,b), we write 

(3.19~) 

(3.19b) 

( 3 . 2 0 ~ ~  b )  

A 

and require that (3.15a,b) be satisfied at the points O j  = jn/N, j = 1, .., N - 1. For #+, 
(3.17a,b) provides an extra two conditions for j = 0,N + 1 (00 = 0, ON = n) to give 
a linear system of N + 1 equations for the N + 1 unknowns (c:)~:~,..~. Expressions 
(3.19a,b) do likewise for ( c ; )~=o , . .N  with, incidentally, (Q-)z=+l given by a routine 
application of 1'Hopital's rule as 

n=O _. 

d 0  
d& . d w  . 

(3.21~) 

(3.21bj 
__ n=O 
d 0  

The linear systems for (c : )~=~ ,~  were solved using LU decomposition and backward 
substitution. The integrals for these systems were computed using Simpson's rule with 
adaptive step size, as given by Press et al. (1989). Early runs of our code indicated 
that the integrals on the right-hand side of (3.15a,b) were particularly sensitive to the 
integration convergence criterion, but ultimately the condition 

(3.22) 

was found to be adequate; here, I n  denotes the value of an integral at the nth 
refinement for Simpson's rule and in most cases n < 14. Having found (C:)+*,N, and 
thence the velocity on each side of the free boundary, we define the residual function 
R, based on (3.9, by 

R ( 0 )  = (Q, + QC)' (0) - Q2 (Q- + Q c ) 2  (0)  - Q2. (3.23 j 

The counting question presents no problem here. Applying (3.23) at the ( N  + 1) 
collocation points used earlier and noting that Q and Q are unknowns, it is clear that 
if we truncate (3.7b) to 

N - 2  

~ ( ~ ) = s i n ' ~ C a j c o s j ~ ,  0 6 0  < n ,  (3.24) 
j=O 
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R(@j)  = 0, j = 0, .., N ,  (3.25) 

in N + 1 unknowns (ao, .., a N - 2 ,  Q, Q).  
The system was solved using Newton's method, although in view of the lack of 

an obvious candidate as an initial guess from which iterations could proceed, the 
following approach was adopted. Noting that the conformal map 

1 + z 2  
1 - 2 2  

z o z = -  

transforms the quarter-circle 1 z (d 1, 0 d argz < in in the z-plane to the quarter- 
plane Re(z) > O,Im(z) > 0, with the points A and B transformed to icotd and 
(1 - h2)/( 1 + h2) respectively, consider the curve 

((1 - h2)/(1 8 + h2) )2/3 + ( F q 3  cot d 
(3.26) 

which has the desired tangency properties at its endpoints on the real and imaginary 
axis (z = 8 + i f ) .  Noting now that the map z - Z = (z2 + y") /y* maps this 
quarter-plane to the upper Z-plane, in particular fixing the images of the original 
points A and B at -1 and 1 respectively, we have 

= 1, 

Parameterizing (3.26) by 

we find that 

(3.27) 

where 6, is the Kronecker delta, and A ( @ )  is determined by solving 

y' C O S ~  A - 37 c0s2 A + 3 ~ '  cos A + (37 + 4y' cos o) = 0. (3.28) 

Elementary analysis shows that there is no ambiguity in this prescription for A,  since 
for the range 0 < 0 6 rc, there is a unique A ( @ )  for any 0 < d < in,O < h < 1. 

Furthermore, whilst the above provides a plausible initial guess for (aj),=0,~-2, and 
thus the free boundary shape, it remains unclear as to what constitutes a good guess 
for Q and Q. In view of the form of equation (3.23), it proves convenient to eliminate 
Q and Q and to reduce the system to one of N - 1 equations. First we note that the 
converged solution will have the properties that 

(3.29) 
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(a  = 0.22,sZ = 1.144) ( a  = 0.3,sZ = 1.961) ( a  = 0.4,a = 1.262) 

h 0.302633 0.302633 0.302633 0.499999 0.499999 0.737947 0.737947 
Q 0.188137 0.188156 0.188156 0.144984 0.144977 0.174102 0.174102 

N = 3 2  N = 4 8  N = 6 4  N = 3 2  N = 4 8  N = 3 2  N = 4 8  

LZA 0.101234 0.101224 0.101217 0.212702 0.212647 0.120234 0.120220 
U B  0.169181 0.169033 0.169000 0.307897 0.307922 0.157959 0.157934 

TABLE 1. Results of computations for three ( E ,  Q) combinations (N = 32,48,64) 

and that for any M (1 < M < N - l), 

Q : ( @ M )  - Q:(@o) a =  
In view of these, the N - 1 conditions to be iterated for are now 

Q ~ ( @ M )  
(3.30) 

(3.32) 

Since the above is valid for any combination of B and h, we decided to run our code 
first for many (2, h)-combinations just to generate Q+ values, and then to proceed to 
iterate on the boundary shape for that combination which best satisfied (3.31). Once 
this solution had been obtained, the converged (a,) values were used as an initial 
guess for a new adjacent (B,h)-combination; in this way a suite of solutions was 
generated for 0 < B < in, 0 < h < 1. 

4. Results 
Most of the runs were carried out for N = 32, although several additional com- 

putations were carried out for N = 48 and 64 in order to verify that our results 
were not dependent on the truncation levels of the Fourier series. Computationally, 
obtaining a converged solution proved to be very expensive in terms of CPU time: 
each Newton-Raphson step required the computation of 0 ( N 3 )  integrals and, with 
a convergence criterion for the residuals of 10-", on average around 10 steps were 
necessary, requiring a total of around 16 hours. In real time, however, solutions were 
obtained within an hour by using parallelized code on a Cray supercomputer, thereby 
making use of the fact that, in the course of one Newton iteration, the most expensive 
part of the calculation, namely the computation of the integrals, does not need to be 
carried out sequentially, but can be divided between competing processors. 

For N = 32, converged solutions were secured for 0.210 < ct < 0.466 (where 
a = B/n, so that 0 d a < i), To ascertain the dependence of the results on N ,  for 
three a values (a  = 0.22,0.3,0.4), we carried out runs for N = 48, in each case fixing 
Q2, and iterating for the (a,) coefficients, h and q ;  one additional run was carried out 
with N = 64 for a = 0.22. Table 1 compares the results obtained, for fixed CI and Q, 
via h, Q and the two cusp constants aA and UB,  given respectively by 

N - 2  N - 2  

(4.la, b) 
n=O n=O 
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FIGURE 3. 

01 = 0.307 ?.-+ 
a = 0.210 

\ 
0 0.2 0.4 0.6 0.8 1 .o 

X 

Range of free-boundary solutions for c( = 0.210,0.307, 0.380 

\ 
and 0.466. 

The results are as expected from Moore et al. (1988), with convergence for the cusp 
constants for different values of N less forthcoming than that for Q and h, but 
sufficiently good to justify using the lowest value of N for further computations in 
the interests of available computing time. In fact, the most efficient strategy appears 
to be to obtain converged solutions for N = 32, and to use the (a,) values as the 
initial guess for higher N for those values of a and h of particular interest, setting 
the rest of the (a,) values initially to zero; in this way, the additional computing time 
required for the solution with N = 48 was not significantly greater than the time 
taken to compute the solution for N = 32. 

For a = 0.210,0.307,0.380 and 0.466, we tried to ascertain the range of h for which 
converged solutions could be obtained; figure 3 shows for each case upper and lower 
limiting free boundary solutions. In all cases, the solution range for h was roughly 
2 x ; in particular, the dotted curves correspond to SZ = 0 and therefore constitute 
upper limits on the position of reattachment. In respect of this, a cautionary word 
is necessary regarding the reduction of the system to ( N  - 1) equations, as given by 
equations (3.29)-(3.32). This simplification obscures the fact that SZz > 0; indeed, 
converged ‘solutions’ were actually obtained for O2 d 0, although these must be ruled 
out on the grounds that the streamfunction should be real. In a later version of our 
code, we chose to prescribe a and 52, rather than a and h, to eliminate this possibility. 

The curves of figure 3 are the endpoint solutions of the curves in figure 4, which is 
a plot of 52 us. Q for the solutions that were obtained. Throughout these results, it 
is notable how significantly different the overall shape of the dividing streamline is, 
even for a small change in h. Quantitatively, a change of O(1OP2) in h yields a change 
of O(10-’) in the maximum height of the curve and an O(1) change in 52. In all cases, 
for fixed a, h decreases monotonically with SZ. The range of possible Q values lies 
within a band of width at most 0.1 for each a, and it would appear that the Q + 0 
limit is simply the case where the free boundary collapses onto the point (0,l). Note 
also that the values of Q are of the order of magnitude that one would expect by 
comparison with the solution (3.2) for unseparated flow; in that case, if we define 
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FIGURE 4. Plot of Q us. Q for obtained solutions (CY = 0.210,0.307, 0.380 and 0.466). 

Qmax to be the greatest value of the tangential velocity either on OA or AB, we have 

max tiA(&), max uB(h)  
0<8$ t 71 O<h<l 

The maximum value for uA(&) occurs at d = in, whereas that for uB(h) occurs at the 
solution of 

On computing the relevant values, we find 
(3 + h4) log( 1 - h4) - 4h4 log h = 0. (4.3) 

1 log2 
Qmax d - - __ w 0.279364, 

2 z  (4.4) 

a little greater than the maximum for the computations for a = 0.210. 
While the left-hand endpoint constitutes a necessary constraint arising due the 

form of the equations, as discussed above, the right-hand endpoint appears to be a 
singular point of the system of equations. By monitoring the Jacobian matrix used for 
the evaluation of the (a,) coefficients, we observed that, for fixed a, the determinant 
monotonically decreases from O( lo6) as G? increases from zero; for the lower limiting 
curves shown in figure 3, it is positive and typically O(lOP4). In fact, we were not 
able to obtain a converged solution with a negative determinant, although there is 
no implication that such solutions do not exist. Similarly, the condition number 
was observed to increase from 0(102) to 0(104), indicating a tendency towards ill- 
conditioning. We also checked the value of the smallest eigenvalue, but found that its 
real part never changed sign over the range of parameters considered. For the lowest 
three values of a in figure 4, we carried out further runs, this time with N = 48, 
in order to clarify the phenomenon. In each case, we found that the value of the 
determinant, which had been O( for N = 32, was O( lo4) for N = 48. However, 
monitoring of the condition number for both N = 32 and N = 48 indicated this 
to be 0(104) in both cases, leading us to believe that the singularity is most likely 
related to the combination of a and h. This observation is made more plausible by 
the fact that in all of the four cases that we have documented in detail, dQ/dG? near 



318 M .  Vynnycky and K .  Kanev 

o.8L 1 
0.6 

h 

0.4 
+a = 0.210 
+ a = 0.307 

01 = 0.388 
a= 0.466 

a 
RGURE 5. Plot of h us. B indicating the parameter ranges within which 

converged solutions were obtained. 

the criticality decreases very rapidly, and in fact may have a turning point. Were this 
to be the case, there would not be a unique solution to the problem, but instead more 
than one possible Q solution for some values of SZ, with the failure of the numerical 
scheme being attributable to this multiplicity. 

Figure 5 represents the scope of converged solutions in terms of SZ and h for 
the same four a values used in figure 4. Most evident here is the narrowness of 
the solution band in h for any given a, and the wider span of SZ values as a is 
increased. Were we to draw a curve passing through the right-hand endpoints of 
these curves, the region lying to its left, and bounded above below and above by the 
curves for a = 0.210,0.466 respectively, would constitute the (h, SZ)  domain for which 
our numerical scheme produced converged results. Although we were not able to 
generate solutions for a values not in the interval [0.210,0.466], we shall see that as 
regards whether any of the above solutions actually do represent the limit of steady 
laminar flow at high Reynolds number, the above range of a proves adequate. 

5. Comparison with high-Re flow 
Now, we examine the above results in the context of the computations, mentioned 

in $1, of Vynnycky & Kimura (1994). In fact, we have recomputed their calculations 
for clockwise flow using a uniform, finer (200 x 200) mesh for Re as high as 9 x lo3, 
although retaining Patankar’s (1980) control-volume method. Since the contour 
plots for the streamfunction and vorticity are both qualitatively and quantitatively 
similar, we do not reproduce these here, but concentrate on the numerical values, not 
documented systematically in the earlier paper, of the positions of separation and 
reattachment, the ratios of the core streamfunction ( Y )  and core vorticity (a), as well 
as the positions of the core centres, (xmX, ymaX) and (xmin,ymin) for the primary and 
secondary eddies respectively, and the position of the dividing streamline. To compare 
with the method of the present paper, we used the separation point as computed from 
the Navier-Stokes equations at the highest value of Re (a = 0.272 at Re = 9 x lo3, 
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Re a h '€' ,Q Xmax Ymax x m i n  Ymtn U A  U B  
1000 0.294 0.578 0.028 0.320 0.485 0.349 0.120 0.795 - 
2000 0.281 0.552 0.042 0.481 0.473 0.358 0.102 0.803 - 
3000 0.278 0.540 0.051 0.539 0.467 0.365 0.104 0.823 - 
4000 0.274 0.532 0.056 0.597 0.465 0.365 0.106 0.838 - 
5000 0.274 0.529 0.060 0.640 0.464 0.369 0.107 0.842 - 
6000 0.273 0.526 0.063 0.684 0.462 0.372 0.107 0.847 - 
7000 0.271 0.524 0.065 0.715 0.462 0.372 0.107 0.848 - 
8000 0.272 0.522 0.068 0.748 0.459 0.376 0.108 0.852 - 
9000 0.272 0.521 0.069 0.777 0.459 0.376 0.108 0.852 - 

analytical 0.272 0.464 0 0 0.445 0.386 0.133 0.866 0.077 0.148 
analytical 0.272 0.460 0.084 0.750 0.448 0.382 0.139 0.859 0.084 0.158 
analytical 0.272 0.459 0.093 0.800 0.449 0.382 0.140 0.858 0.085 0.159 
analytical 0.272 0.458 0.103 0.866 0.449 0.381 0.142 0.857 0.087 0.162 
analytical 0.272 0.433 0.518 1.735 0.498 0.333 0.206 0.779 0.270 0.415 

TABLE 2. Summary of results for high Reynolds number computations and five coupled Batchelor 
flow solutions for c( = 0.272 

but see its dependence on Re in table 2)  as input for the inviscid equations; as before, 
we generated a suite of solutions for this value of a for different SZ values. 

Table 2 summarizes the dependence of a, h, Y ,  f2, ~,,,,y,,,,x,i~ and yn,in on Re  
for lo3 < Re < 9 x lo3. The data towards the bottom are for the inviscid solutions 
for a = 0.272, the first of which has the property that SZ = 0, so that Y = 0. The 
last row contains the data for the highest value of SZ that we could compute, with 
the intervening rows containing data for 52 close to that found for the Navier-Stokes 
computations. The positions of the core centres are obtained by solving (3.12a,b) 
for W, using Newton's method. Furthermore, we plot in figure 6 the location of 
the dividing free streamline for Re = 3,6,9 x lo3 and for the two extreme inviscid 
solutions of table 2. Whilst agreement is by no means perfect, there are several 
encouraging trends. The overall form of the dividing streamline for which f2 = 0 is 
similar to those for the full computations, with the greatest discrepancy near the point 
of reattachment where the streamlines have infinite gradient ; however, it is reassuring 
to note that the value of h, which is consistently larger for the Navier-Stokes solutions 
than for the inviscid solutions, is found to decrease with Re. The positions of the 
cores as given by the two methods also agree well, all the more so for the main 
eddy. Lastly, while the SZ = 0 curve provides the best agreement in terms of h, the 
intermediate curves, which differ in h from the D = 0 curve by O( w3), provide better 
agreement for yl,xmax and y,,,. For the inviscid solutions, we have also given the 
values of the cusp constants UA and U B  ; these are both found to decrease uniformly 
with SZ.  This appears to be a trend in the right direction, in the sense that the cusp 
constant at separation of the inviscid solution which is the limit as Re + co of the 
Navier-Stokes solution should be aA = 0; on the other hand, since the minimum 
value was obtained for f2 = 0, there is clearly no further possibility of obtaining lower 
values of aA for this value of a with the present parameterization. 

6. Conclusion 
We have considered Batchelor flows in a confined quarter-circular cavity. Guided 

by earlier high Reynolds number computations (Vynnycky & Kimura 1994), which 
indicated the presence of a primary and a secondary eddy, we have posed a free- 
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FIGURE 6. The dividing streamline for Re = 3,6,9 x lo3 and limiting Batchelor flows for a = 0.272. 

boundary problem involving two eddies within the cavity, each of different constant 
vorticity, with the aim of constructing an inviscid solution which might plausibly 
represent the limit of infinite Reynolds number flow for this configuration. The 
fact that both eddies are confined and rotational constitutes the essential difference 
between this problem and that of external flow past a bluff body. Recasting the 
problem as a Fredholm integral equation, we have obtained numerically a two- 
parameter family of solutions; these parameters may be viewed as any two of the 
following: the separation angle (a) ;  the reattachment point (h ) ;  the ratio of the core 
vorticities (Q); and the slip velocity at separation and reattachment of the main eddy 
(Q) .  We have found that arbitrary prescriptions of a and h do not, in general, lead 
to numerically obtainable solutions, but that for fixed a we were only able to find 
solutions for a range in h of width O( lop2); for such a range, the value of Q changes 
by O(10-') and that of 52 by O(1). For all solutions, for fixed a, Q increases and SZ 
decreases with increasing h. The width of the band in h was found to be constrained 
by two seemingly unrelated phenomena: if h is too great, the requirement that Q2 > 0 
is violated, whereas if h is too small, a vanishing determinant appears in the Jacobian 
matrix for Newton's method. Furthermore, for each of the a values considered, a 
value of h was found corresponding to Q = 0; this constitutes a limiting solution 
corresponding to the decoupling of the eddies, with the secondary eddy stagnant. 

The range of a for which solutions were found encompasses the value predicted by 
high Reynolds number computations, and it is natural to ask whether any of the cou- 
pled Batchelor flows found actually approximate to the results of these computations. 
This was done by using as input for the Batchelor flows the value of a for Re = 9 x lo3 
and generating a family of solutions for different h as explained before. We have 
found encouraging agreement in terms of the position of the dividing streamline. 
Furthermore, trends in the value of the reattachment position and the main core 
centre for increasing Re lend support to the claim that the two-eddy model developed 
here does show significant promise as regards determining the flow in the infinite-Re 
limit. However, several further issues must first be borne in mind, as follows. 

First, there may be doubt as to whether the results of the Navier-Stokes compu- 
tations presented actually show any asymptotic limiting behaviour for the range of 
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Reynolds numbers shown here; in particular, the increase in the values of Y and 52 
in table 2 does not provide conclusive evidence that such a limit has been reached. 
Linear extrapolation of Y and 52 against Re-"2, not presented here, based on the 
data obtained nominally indicates that, as Re-"' --f 0, Y = 0.1, D = 1.2, values which 
are significantly higher than those actually computed. The issue might therefore be 
resolved either by computations at much higher Reynolds numbers, assuming steady 
solutions exist, or the closure of the asymptotic model to be discussed below. Second, 
in view of the fact that the inviscid problem treated here does not even include the 
boundary condition which drives the flow in the full equations, there does seem to be 
scope for ambiguity when comparing methods. For instance, it is likely that changing 
the flow-driving boundary condition will influence each of the data quantities in 
table 2. However, subject to the modifications to be discussed in the next paragraph 
and in view of the way we used x and D to 'fit' to a high-Re solution, it is at least 
clear that this ambiguity manifests itself at the inviscid level in the fact that a and h 
(or equally 0 )  must be prescribed a priori for a well-posed problem; thus, a model 
including this lost boundary condition should close the problem satisfactorily. 

In relation to this and to the counting argument for the discretized inviscid equa- 
tions, as explained in 92, it would be preferable, if the Batchelor flow model is ever 
to be incorporated into an asymptotic treatment of the Navier-Stokes equations for 
Re+ 1 for the problem formulated in Vynnycky & Kimura (1994), that a and h also 
be unknowns to be determined. This would require supplementary conditions, in 
addition to Bernoulli's equations; one possibility would be to impose a continuous 
curvature condition at separation, as is done by selecting the appropriate curve from 
Kirchhoff's free-streamline theory for external bluff body flow. This has not been 
done here, since the parameterization (3.7a, b )  gives only tangential separation, which 
is all that the inviscid theory requires; the curvature in all cases has been infinite, 
and it would be of interest to see whether this suggested extra condition will improve 
agreement between the predictions for the dividing streamline. Certainly, at the cusp 
level, a parameterization which takes into account both continuous gradient and cur- 
vature would automatically give aA = 0, giving better agreement than in § 5 between 
the inviscid high-Re solutions at the separation point. One more condition would 
still be required to pin down h, or equivalently Q or L?. Tentatively speaking, this 
appears to come from a condition on the viscous flow, following either Riley (1981) 
or Vynnycky ( 1994), although with significant modification since, in principle, there 
would be two coupled periodic boundary layers, and therefore a condition on each of 
o+ and w- to determine 52, possibly uniquely. Another concern here is the possible 
multiplicity of inviscid solutions speculated upon in $4, which seems to go against 
our physical expectation that there should be a unique solution to the problem. One 
might surmise that the requirements of the boundary-layer theory will settle this also, 
as would be the case were the necessary computations to produce a value of D that 
is not near the critical region where 1 dQ/dQ I becomes large, as is suggested by the 
Navier--Stokes computations presented here. 

However, it is perhaps this incorporation of a boundary-layer structure into an 
asymptotic treatment of the problem presented here that presents the greatest obstacle. 
Although the high Reynolds number computations did not indicate any more than 
two eddies, there is a possibility that secondary separation will occur at the no-slip 
boundary on the smaller-eddy side of the inviscid separation point for the boundary- 
layer equations, a situation which would wreck the two-eddy model for 52 # 0; for 
52 = 0, we may have the possibility that the position of the dividing streamline is 
satisfactorily predicted, even though the subsidiary flow is effectively neglected. 
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